Processing math: 43%

Niemand seqeunce

Note

Let's define a Niemand sequence (an,N) as a sequence (in N) of sequences (in n).

The map

(an,N)(SN):=Nn=0an,N

removes the n-index. And then

(SN)Nn=0SN

removes the second.

Examples

a{n,N} constant in N

For an,N constant in N, the series Nn=0an,N is just the sequence of partial sums.

Riemann integral

f a function and x0,x1 numbers.

With h(N):=x1x0N

an,N:=h(N)f(x0+nh(N))

we have that

Nn=0an,N

is the Riemann sum and

lim

(see Limit in a metric space)

Exponential function
todo: compare the following construction with the two q-exponentials

a_{n,N} = \left(\prod_{k=1}^n\left(1-\dfrac{k-1}{N}\right)\right) \dfrac{1}{n!}\left(\dfrac{C(N)\,k\,z}{1-\frac{k\zeta}{N}}\right)^n

{\mathrm e}_N(z):=\sum_{n=0}^N a_{n,N} = \left(1+\dfrac{1}{1-\frac{k\zeta}{N}}c(N)\dfrac{z}{N}\right)^N

Fulfills

{\mathrm e}_N'(\zeta)=k\,{\mathrm e}_N(\zeta)

(only for z=\zeta, not for all of z like the exponential function)

and with c(N)=1, we have

\lim_{N\to\infty}\sum_{n=0}^N a_{n,N}={\mathrm e}^{k\,z}

Sum[Product[1 - (k - 1)/N, {k, 1, n}] ((C[N] k z)/(1 - (k \[Zeta])/N))^n/n!, {n, 0, N}] // simple

What's nice here is that also

\sum_{n=0}^\infty \lim_{N\to\infty} a_{n,N} = {\mathrm e}^{k\,z}

(see Exponential function)

Inverting z

a_{n,N} = -\left(\prod_{k=1}^n\left(1-\frac{k}{N}\right)\right)\dfrac{(-c(N))^{n+1}}{n+1}\dfrac{z^n}{n!}

\sum_{n=0}^{N-1} a_{n,N} = \dfrac{1}{z} \left(1 - (1-\frac{c(N)\,z}{N})^N\right)

For c(N):=c a constant, this is a sort of regularization of \dfrac{1}{z} and has the limit N\to\infty of \dfrac{1-{\mathrm e}^{-c\,z}}{z}.

Sum[-Product[1 - k/N, {k, 1, n}] ((-c[N])^(n+1)/(n + 1)) z^n/n!, {n, 0, N - 1}] // Simplify

(see Infinite geometric series)

In fact, let

\phi(z):=-\left(1-\dfrac{c(N)\,z}{N}\right)^N

Then

\dfrac{1}{z} \left(1 - (1-\frac{c(N)\,z}{N})^N\right) = \dfrac{\phi(0+z)-\phi(0)}{z}

is just the finite difference quotient of this at z=0.

References


Context

Link to graph
Log In
Improvements of the human condition