Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
riemann_zeta_function [2015/12/27 17:23]
nikolaj
riemann_zeta_function [2016/06/02 10:58]
nikolaj
Line 20: Line 20:
 == Functional equation ==  == Functional equation == 
 Tells you most values: Tells you most values:
-^ $ \zeta(s) = 2(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^+^ $ \zeta(s) = 2\,(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^
  
 == Specific values == == Specific values ==
 ^ $\zeta(-2m)=0$ ^ ^ $\zeta(-2m)=0$ ^
 ^ $\zeta(2m)=(-1)^{m+1}\frac{(2\pi)^{2m}}{2(2m)!} B_{2m}$ ^ ^ $\zeta(2m)=(-1)^{m+1}\frac{(2\pi)^{2m}}{2(2m)!} B_{2m}$ ^
 +
 +so that
 +
 +$\zeta(1-2m) = \dfrac{2(2m-1)!}{(4\pi^2)^m}\cos(m\pi)\zeta(2m)$
 +
 +$\zeta(1-2m)=(-1)^{m+1}\frac{1}{2m}B_{2m}$
 +
 E.g. E.g.
 ^ $\zeta(2)=\pi^2/​6$ ^ ^ $\zeta(2)=\pi^2/​6$ ^
Line 77: Line 84:
 $\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $ $\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $
  
-He takes the integral into the complex plane, where he $ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​+He takes the integral into the complex plane, where the $ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​
 He discovers that the function obeys a reflection formula He discovers that the function obeys a reflection formula
  
Link to graph
Log In
Improvements of the human condition