Riemann zeta function
Function
definition | ζ:C∖{1}→C |
definition | ζ(s):={∑∞n=1n−sifR(s)>1analytic continuationelse |
“analytic continuation”
Theorems
Euler product:
ζ(s)=∏p∈primes11−p−s
Representations
ζ(s)=∫∞0xsex−1dxx∫∞0xsex−0dxx=1Γ(s)∫∞0xsex−1dxx |
---|
logζ(s)=s∫∞0π(x)xs−1dxx |
where π is the prime-counting function.
Functional equation
Tells you most values:
ζ(s)=2(2π)s−1sin(πs/2)Γ(1−s)ζ(1−s) |
---|
Specific values
ζ(−2m)=0 |
---|
ζ(2m)=(−1)m+1(2π)2m2(2m)!B2m |
so that
ζ(1−2m)=2(2m−1)!(4π2)mcos(mπ)ζ(2m)
ζ(1−2m)=(−1)m+112mB2m
E.g.
ζ(2)=π2/6 |
---|
ζ(4)=π4/90 |
Also
ζ(−1)=−1/12 |
---|
Expansions
Fix an N and split the infinite sum into a finite part (∑Nn=1n−s is also the subject of Faulhaber's formula) and ∑∞n=Nn−s. We can learn about its divergence via the following approximation
∑∞n=Nn−s≈lim
=\dfrac{N^{-s+1}}{-s+1}\left(\lim_{\varepsilon\to 0}\dfrac{1}{\varepsilon^{-s+1}}-1\right)
=\dfrac{1}{s-1}\dfrac{N}{N^s}\left(1-\lim_{\varepsilon\to 0}\varepsilon^{{\mathrm{Re}}(s)-1}{\mathrm e}^{i\,{\mathrm{Im}}(s)\log(\varepsilon)}\right)
Due to the term \frac{1}{s-1}, the value s=1 is a proper singularity and this is also true for the analytical continuation of the sum, i.e. the zeta function. On the other hand, the term \lim_{\varepsilon\to 0}\varepsilon^{{\mathrm{Re}}(s)-1} is responsible for the sum being undefined for \mathrm{Re}(s)\le 1.
1+2+3+...
(maybe delete this)
http://i.imgur.com/HCfGOYp.gif
Sum[k, {k, 0, n}] Binomial[n + 1, 2] Plot[Binomial[n, 2], {n, -1, 4}, ImageSize -> 200] Integrate[Binomial[n, 2], {n, s, s + d}]/d // Simplify Solve[% == -1/12, d] Table[{s, %}, {s, 0, 1, 1/2}] // TableForm
On Riemanns paper
In Riemanns original paper, Riemann observed that a integration variable substitution x→n·x in the definition of the Gamma function
\Gamma(s) := \int_0^\infty x^{s-1} {\mathrm e}^{-x}\,{\mathrm d}x
let's you write
{\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x
and thus
\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \sum_{n=1}^\infty \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x
Now consider the geometric series
\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)
(check signs)
The above sum over the integral is convergent for s>1, while the expression
\frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x
(check signs)
works for all complex s\ne 1. We thus found the analytical continuation.
The integrand \frac{1} { {\mathrm e}^x-1} diverges periodically in steps of 2\pi\,i. He discovers that the function obeys a reflection formula
https://en.wikipedia.org/wiki/Riemann_zeta_function#The_functional_equation
Reference
Wikipedia: Riemann zeta function Riemanns original paper