Processing math: 52%

Riemann zeta function

Function

definition ζ:C{1}C
definition ζ(s):={n=1nsifR(s)>1analytic continuationelse

analytic continuation


Theorems

Euler product:

ζ(s)=pprimes11ps

Representations
ζ(s)=0xsex1dxx0xsex0dxx=1Γ(s)0xsex1dxx
logζ(s)=s0π(x)xs1dxx

where π is the prime-counting function.

Functional equation

Tells you most values:

ζ(s)=2(2π)s1sin(πs/2)Γ(1s)ζ(1s)
Specific values
ζ(2m)=0
ζ(2m)=(1)m+1(2π)2m2(2m)!B2m

so that

ζ(12m)=2(2m1)!(4π2)mcos(mπ)ζ(2m)

ζ(12m)=(1)m+112mB2m

E.g.

ζ(2)=π2/6
ζ(4)=π4/90

Also

ζ(1)=1/12
Expansions

Fix an N and split the infinite sum into a finite part (Nn=1ns is also the subject of Faulhaber's formula) and n=Nns. We can learn about its divergence via the following approximation

n=Nnslim

=\dfrac{N^{-s+1}}{-s+1}\left(\lim_{\varepsilon\to 0}\dfrac{1}{\varepsilon^{-s+1}}-1\right)

=\dfrac{1}{s-1}\dfrac{N}{N^s}\left(1-\lim_{\varepsilon\to 0}\varepsilon^{{\mathrm{Re}}(s)-1}{\mathrm e}^{i\,{\mathrm{Im}}(s)\log(\varepsilon)}\right)

Due to the term \frac{1}{s-1}, the value s=1 is a proper singularity and this is also true for the analytical continuation of the sum, i.e. the zeta function. On the other hand, the term \lim_{\varepsilon\to 0}\varepsilon^{{\mathrm{Re}}(s)-1} is responsible for the sum being undefined for \mathrm{Re}(s)\le 1.

1+2+3+...

(maybe delete this)

http://i.imgur.com/HCfGOYp.gif

Sum[k, {k, 0, n}]
Binomial[n + 1, 2]
Plot[Binomial[n, 2], {n, -1, 4}, ImageSize -> 200]

Integrate[Binomial[n, 2], {n, s, s + d}]/d // Simplify
Solve[% == -1/12, d]
Table[{s, %}, {s, 0, 1, 1/2}] // TableForm
On Riemanns paper

In Riemanns original paper, Riemann observed that a integration variable substitution x→n·x in the definition of the Gamma function

\Gamma(s) := \int_0^\infty x^{s-1} {\mathrm e}^{-x}\,{\mathrm d}x

let's you write

{\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x

and thus

\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \sum_{n=1}^\infty \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x

Now consider the geometric series

\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)

(check signs)

The above sum over the integral is convergent for s>1, while the expression

\frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x

(check signs)

works for all complex s\ne 1. We thus found the analytical continuation.

The integrand \frac{1} { {\mathrm e}^x-1} diverges periodically in steps of 2\pi\,i. He discovers that the function obeys a reflection formula

https://en.wikipedia.org/wiki/Riemann_zeta_function#The_functional_equation

http://boards.4chan.org/sci/thread/7746199#p7747084

Reference

Subset of

Link to graph
Log In
Improvements of the human condition