Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
riemann_zeta_function [2016/05/31 20:20]
nikolaj
riemann_zeta_function [2016/06/03 22:54] (current)
nikolaj
Line 20: Line 20:
 == Functional equation ==  == Functional equation == 
 Tells you most values: Tells you most values:
-^ $ \zeta(s) = 2(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^+^ $ \zeta(s) = 2\,(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^
  
 == Specific values == == Specific values ==
Line 27: Line 27:
  
 so that so that
 +
 +$\zeta(1-2m) = \dfrac{2(2m-1)!}{(4\pi^2)^m}\cos(m\pi)\zeta(2m)$
  
 $\zeta(1-2m)=(-1)^{m+1}\frac{1}{2m}B_{2m}$ $\zeta(1-2m)=(-1)^{m+1}\frac{1}{2m}B_{2m}$
Line 74: Line 76:
 ${\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,​{\mathrm d}x $ ${\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,​{\mathrm d}x $
  
-and thenrecognizing ​the geometric series ​+and thus 
 + 
 +$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \sum_{n=1}^\infty \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x $ 
 + 
 +Now consider ​the geometric series
  
 $\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)$ $\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)$
  
-give you+(check signs) 
 + 
 +The above sum over the integral is convergent for $s>1$, while the expression 
 + 
 +$\frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $ 
 + 
 +(check signs)
  
-$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $+works for all complex ​$s\ne 1$. We thus found the analytical continuation.
  
-He takes the integral into the complex plane, where he $ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​+The integrand ​$ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​
 He discovers that the function obeys a reflection formula He discovers that the function obeys a reflection formula
  
Link to graph
Log In
Improvements of the human condition