Smooth function of a linear operator
Set
Expansion
Let A(z),B(z) be function with expansion around a,b, respectively.
A(D)B(X)=∑∞k=0A(k)(a)1k!(D−a)k⋅∑∞j=0B(j)(b)1j!(X−b)j
Truncation at k=j
For D a linear operator with Dn+1Xn=0 in an C-algebra with unit and infinite sums, we find
A(D)B(X)=∑∞j=0B(j)(b)1j!(∑jk=0A(k)(a)1k!(D−a)k(X−b)j).
(here I say C-algebra and interpret a as a times the unit. I haven't checked out what the minimal requirements really are, yet)
Differential operators
For a=0 and D=Y∂∂X, we use {j \choose k}=\frac{1}{k!}\frac{j!}{(j-k)!} and find
A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} \left( \sum_{k=0}^j A^{(k)}(0) {\large{j \choose k}} Y^k (X-b)^{j-k} \right).
Shift operator
For A=\exp, i.e. A^{(k)}(0)=1, we use (u+v)^j=\sum_{k=0}^j {j \choose k} u^k v^{j-k} and find
A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (Y+(X-b))^j=B(Y+X).
Direct prove
Note that the last bit can be proven more directly by Taylor expansion of f(x+h) around x:
f(x+h)=\sum_{k=0}^\infty\frac{1}{k!}f^{(k)}(x)\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(h\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x).
Curiously, note how therefore the approximation to a tangent can be expressed as
\dfrac{f(x+h)-f(x)}{h}=\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)
References
Wikipedia: Shift operator