Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
smooth_function_of_a_linear_operator [2015/01/20 13:18]
nikolaj
smooth_function_of_a_linear_operator [2015/01/20 13:19]
nikolaj
Line 46: Line 46:
  ​=B(Y+X)$.  ​=B(Y+X)$.
  
-Note that the last bit can be proven more directly. Taylor expansion of $f(x+h)$ around $x$ gives+== Direct prove ==
  
-$f(x+d)=\sum_{k=0}^\infty\frac{1}{k!}(\frac{\partial^k}{\partial x^k}f(x))\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(d\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$+Note that the last bit can be proven more directly by Taylor expansion of $f(x+h)$ around $x$: 
 + 
 +$f(x+d)=\sum_{k=0}^\infty\frac{1}{k!}(\frac{\partial^k}{\partial x^k}f(x))\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(d\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$.
  
 Curiously, note how Curiously, note how
  
-$\dfrac{\partial}{\partial x}\,​f(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$+$\dfrac{\partial}{\partial x}\,​f(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$,
  
-$f(x)=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}\int_0^x f(y)\,​{\mathrm d}y$+$f(x)=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}\int_0^x f(y)\,​{\mathrm d}y$.
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition