Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
smooth_function_of_a_linear_operator [2015/01/20 13:19]
nikolaj
smooth_function_of_a_linear_operator [2015/02/02 20:18]
ben
Line 7: Line 7:
 Let $A(z),B(z)$ be function with expansion around $a,b$, respectively. ​ Let $A(z),B(z)$ be function with expansion around $a,b$, respectively. ​
  
-$A(D)\,B(X) +$A(D)\,​B(X)=\sum_{k=0}^\infty A^{(k)}(a) \dfrac{1}{k!} (D-a)^k \cdot
-=\sum_{k=0}^\infty A^{(k)}(a) \dfrac{1}{k!} (D-a)^k \cdot+
  ​\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (X-b)^j ​  ​\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (X-b)^j ​
 $ $
Line 16: Line 15:
 For $D$ a linear operator with $D^{n+1}X^{n}=0$ in an $\mathbb C$-algebra with unit and infinite sums, we find For $D$ a linear operator with $D^{n+1}X^{n}=0$ in an $\mathbb C$-algebra with unit and infinite sums, we find
  
-$A(D)\,B(X) +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}+
  ​\left( ​  ​\left( ​
  ​\sum_{k=0}^j ​      ​A^{(k)}(a) \dfrac{1}{k!} (D-a)^k (X-b)^j ​  ​\sum_{k=0}^j ​      ​A^{(k)}(a) \dfrac{1}{k!} (D-a)^k (X-b)^j ​
Line 30: Line 28:
 and find and find
  
-$A(D)\,B(X) +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}+
  ​\left(  ​\left(
  ​\sum_{k=0}^j ​     A^{(k)}(0) {\large{j \choose k}} Y^k (X-b)^{j-k}  ​\sum_{k=0}^j ​     A^{(k)}(0) {\large{j \choose k}} Y^k (X-b)^{j-k}
Line 42: Line 39:
 and find and find
  
-$A(D)\,​B(X) ​ +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (Y+(X-b))^j=B(Y+X)$.
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (Y+(X-b))^j +
- =B(Y+X)$.+
  
 == Direct prove == == Direct prove ==
Line 50: Line 45:
 Note that the last bit can be proven more directly by Taylor expansion of $f(x+h)$ around $x$: Note that the last bit can be proven more directly by Taylor expansion of $f(x+h)$ around $x$:
  
-$f(x+d)=\sum_{k=0}^\infty\frac{1}{k!}(\frac{\partial^k}{\partial x^k}f(x))\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(d\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$+$f(x+d)=\sum_{k=0}^\infty\frac{1}{k!}(\frac{\partial^k}{\partial x^k}f(x))\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(d\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$.
  
 Curiously, note how Curiously, note how
  
-$\dfrac{\partial}{\partial x}\,​f(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$+$\dfrac{\partial}{\partial x}\,​f(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$,
  
-$f(x)=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}\int_0^x f(y)\,​{\mathrm d}y$+$f(x)=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}\int_0^x f(y)\,​{\mathrm d}y$.
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition