Taylor's formula
Theorem
k,n∈N, k>n |
f∈Ck(Rn,R) |
postulate | f(x)=∑|α|≤k1α!f(α)(0) xα+Rk(x) |
with
postulate | Rk(x)=∑|α|=k+1k+1α!(∫10 (1−s)k F(α)(s x) ds) xα |
where we use multi-index notation for α∈FinSequence(N), see Multi-index power.
Discussion
f∈C∞(R,R), a∈R
f(x)=∑∞n=0f(n)(a)1n!(x−a)n |
---|