## Unital ring

### Set

context | $\langle X,+,* \rangle \in \mathrm{ring}(X)$ |

definiendum | $\langle X,+,* \rangle \in \mathrm{it}$ |

postulate | $\langle X,* \rangle \in \mathrm{monoid}(X)$ |

The second requirement implies that there is an identiy for the binary operation $*$.

One generally (also) calls $X$ the unital ring, i.e. the set where the operations “$+$” and “$*$” are defined on.

### Reference

Wikipedia: Ring