This is an old revision of the document!


Yoneda embedding

Functor

context ${\bf C}$ … small category
definiendum $\mathcal y$
inclusion $\mathcal y$ in ${\bf C}\longrightarrow{\bf Set}^{{\bf C}^\mathrm{op}}$
definition $\mathcal y\,A:={\bf C}[-,A]$
definition $\mathcal y(\,f):=g\mapsto f\circ g$

Discussion

To elaborate on the action of $\mathcal y$ on arrows:

Consider a general arrow $f:{\bf C}[A,B]$.

In the presheaf category ${\bf Set}^{{\bf C}^\mathrm{op}}$, the image arrow

$\mathcal y(\,f)$ in $\mathrm{nat}\left({\bf C}[-,A],{\bf C}[-,C]\right)$

is the natural transformation, with components

$y(\,f)_X:{\bf C}[X,A]\to{\bf C}[X,B],$

mapping an arrow $g$ to an arrow $f\circ g$.

Reference

Wikipedia: Functor category

Parents

Element of

Requirements

Link to graph
Log In
Improvements of the human condition