definiendum | $ \mathbb Z \equiv \mathbb N\times\mathbb N\ /\ \{\langle \langle a,b\rangle,\langle m,n\rangle\rangle\ |\ a+n = b+m )\} $ |
with $a,b,n,m\in \mathbb N$.
For $a \ge b$, we denote $\langle a,b\rangle$ by $a-b$. The structure of the non-negative integers is then that of the natural numbers.
For $a < b$, we have $(b-a)>0$ and we denote $\langle a,b\rangle$ by $-(b-a)$.
So if $[\langle a,b\rangle]$ is the equivalence class of $\langle a,b\rangle$ with respect to the equivalence relation $\{\langle \langle a,b\rangle,\langle m,n\rangle\rangle\ |\ a+n = b+m )\}$, we have
where $k$ is any natural number.
The integer $-[\langle a,b\rangle]$ is the additive inverse of $[\langle a,b\rangle]$ and can be computed as
$-[\langle a,b\rangle]=[\langle b,a\rangle]$
Wikipedia: Integer