Equivalence relation

Set

context $X$
definiendum $ \sim \in \text{EquivRel}(X) $
context $ \sim \in \mathrm{Rel}(X) $
$x,y,z\in X$
postulate $ x\sim x $
postulate $ x\sim y \Leftrightarrow y\sim x $
postulate $ x\sim y \land y\sim z \Leftrightarrow x\sim z $

Discussion

The relation $\sim$ is an equivalence relation, if it's in the intersection of all reflexive, all symmetric and all transitive relation. Hence

Reference

Parents

Subset of

Link to graph
Log In
Improvements of the human condition