Processing math: 100%

Finite exponential power

Function

context $ m\in{\mathbb N}
definition pexpn:CC
definition pexpn(z):=(1+xn)n

pexpn(x)=nk=0ak(n)1k!xk

with

ak(n)=k1j=1(1kjn)1

Elaboration

(x+y)m=mk=0n!k!(mk)!xkymk

so

(1+b(n)x)n=nk=0(b(n)kn!(nk)!)xkk!

(Note that here the summands depend on the upper sum bound n, this sum doesn't make for an infinite sum of partial sums - the to be partial sums are all different)

The above sum follows. Also,

=nk=0(kj=1(1j1n(kj1))x)

Derivative

ddzpexpn(z)=11+z/npexpn(z)

ddnpexpn(z)=(11+(z/n)1+log(11+z/n))pexpn(z)

References

Link to graph
Log In
Improvements of the human condition