Finite exponential power
Function
context | $ m\in{\mathbb N} |
definition | pexpn:C→C |
definition | pexpn(z):=(1+xn)n |
pexpn(x)=∑nk=0ak(n)1k!xk
with
ak(n)=∏k−1j=1(1−k−jn)≤1
Elaboration
(x+y)m=∑mk=0n!k!(m−k)!xkym−k
so
(1+b(n)x)n=∑nk=0(b(n)−kn!(n−k)!)xkk!
(Note that here the summands depend on the upper sum bound n, this sum doesn't make for an infinite sum of partial sums - the to be partial sums are all different)
The above sum follows. Also,
=∑nk=0(∏kj=1(1j−1n(kj−1))x)
Derivative
ddzpexpn(z)=11+z/npexpn(z)
ddnpexpn(z)=−(11+(z/n)−1+log(11+z/n))pexpn(z)
References
Wikipedia: Exponential function, Matrix exponential, Exponential map