Growing sequence
Set
context | X |
definiendum | A∈GrowingSequence(X) |
postulate | A∈InfSequence(X) |
n∈N |
postulate | An⊆An+1 |
Discussion
Ramifications
For falling sequences we have: lim.
For growing sequences we have: \lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n.
Predicates
predicate | A_n\uparrow \hat A \equiv A\in \mathrm{GrowingSequence}(X)\ \land\ \lim_{n\to\infty}A_n=\hat A |