Hamiltonian equations

Set

context $ \langle \mathcal M, H\rangle $ … Classical Hamiltonian system
definiendum $ \pi \in \mathrm{it} $
postulate $ \pi:C(\mathbb R,\Gamma_{\mathcal M}) $
postulate $ \pi'(t) = X_H(\pi(t),t) $
todo: Hamiltonian vector field

Discussion

Equivalent definitions
@#55CCEE: context
range $ {\bf q} \in \mathcal M $
range $ {\bf p} \in T^*\mathcal M $
range $ H:: H({\bf q},{\bf p},t)$
definiendum $ \langle q,p \rangle \in \mathrm{it} $
postulate $ q:C(\mathbb R,\mathcal M) $
postulate $ p:C(\mathbb R,T^*\mathcal M) $
$i\in\mathrm{range}(\mathrm{dim}(\mathcal M))$
postulate $ \frac{\partial}{\partial t}q^i(t) = \frac{\partial}{\partial {\bf p}_i} H(q(t),p(t),t) $
postulate $ \frac{\partial}{\partial t}p_i(t) = -\frac{\partial}{\partial {\bf q}^i} H(q(t),p(t),t) $

i.e.

$ \pi:: t\mapsto\langle q^1(t),\dots,q^s(t),p_1(t),\dots,p_s(t) \rangle $

$ \langle q(t),p(t) \rangle\equiv \langle q^1(t),\dots,q^s(t),p_1(t),\dots,p_s(t) \rangle $

Reference

Parents

Subset of

Link to graph
Log In
Improvements of the human condition