Higher moments of the stretched exponential function

Set

definiendum $\mathrm{it}: \mathbb R^3 \to \mathbb R$
definiendum $\langle \tau_K,\beta,n \rangle \mapsto \int_0^\infty\ \ t^{n-1}\ \mathrm{e}^{-(t/\tau_K)^\beta}\ \mathrm d t$

Discussion

Theorems

$ \mathrm{it}(\tau_K,\beta,n)=\frac{\tau_K^n}{\beta}\Gamma(\frac{n}{\beta}) $

Reference

Parents

Context

Link to graph
Log In
Improvements of the human condition