Leibniz formula for determinants

Set

context $n\in \mathbb N$
context $R$ … abelian ring
definiendum $ \mathrm{det}_n:\mathrm{SquareMatrix}(n,R)\to R$
definiendum $ \mathrm{det}_n(A):=\sum_{j_1,\dots,j_n}^n\varepsilon_{j_1,\dots,j_n}\cdot \prod_{k=1}^n A_{k,j_k}$

Discussion

This function concides with the implicitly defined determinant of Determinant, if the matrices are taken to be linear operators in the usual way.

Reference

Parents

Context

Link to graph
Log In
Improvements of the human condition