Metric
Set
context | $ X $ … set |
definiendum | $d\in$ it |
postulate | $d:X\times X \to \mathbb{R}_+$ |
postulate | $ d(x,y)=0 \implies x=y$ |
postulate | $ d(x,y)=d(y,x)$ |
postulate | $ d(x,y)\le d(x,p)+d(p,y)$ |
Discussion
Reference
Wikipedia: Metric
context | $ X $ … set |
definiendum | $d\in$ it |
postulate | $d:X\times X \to \mathbb{R}_+$ |
postulate | $ d(x,y)=0 \implies x=y$ |
postulate | $ d(x,y)=d(y,x)$ |
postulate | $ d(x,y)\le d(x,p)+d(p,y)$ |
Wikipedia: Metric