Norm
Set
context | $F$ … subfield of $\mathbb{C}$ |
context | $V$ … $F$-vector space |
definiendum | $p\in \mathrm{Norm}(V)$ |
postulate | $p:V\to \mathbb R $ |
$v,w\in V$ | |
postulate | $p(v+w) \le p(v)+p(w)$ |
postulate | $p(v)=0 \implies v=0$ |
$\lambda\in F$ | |
postulate | $p(\lambda\cdot v) = |\lambda|\cdot p(v)$ |
Discussion
$ p(v)\ge 0 $ |
---|
The last axiom $\ p(v)=0 \implies v=0\ $ isn't part of seminorm.
Reference
Wikipedia: Norm