Observable
Set
context | $V$…Hilbert space |
definiendum | $\mathrm{Observable}(V)\equiv\mathrm{SelfAdjoint}(V)\cap\mathrm{End}(V)$ |
Discussion
Observables are the linear self-adjoint operators.
- $\langle\psi|A\ \phi\rangle\in \mathbb C$ is called transition amplitude.
- $\frac{|\langle\psi|A\ \phi\rangle|^2}{\Vert\psi\Vert^2\Vert\psi\Vert^2}\ge 0$ is called transition probability.
- $\langle \psi | A\ \psi \rangle\in \mathbb R$ is called expectation value.
- $\frac{\langle \psi | A\ \psi \rangle}{\Vert\psi\Vert^2}\in \mathbb R$ is called mean value.
Reference
Wikipedia: Self-adjoint operator, Observable