Path . graph theory
Set
definiendum | $\langle V,E,\psi\rangle \in \mathrm{it}(E,V) $ |
postulate | $\langle V,E,\psi\rangle $ … simple graph |
range | $ u,v\in V $ |
range | $ a$ … sequence in $V$ |
range | $ i\in\mathbb N$ |
postulate | $d(v)\neq 0$ |
postulate | $ \exists a.\ \forall u,v.\ (\exists i.\ \{a_{i},a_{i+1}\}=\{u,v\}) \leftrightarrow (\{u,v\}\dots\mathrm{edge}) $ |
Discussion
A path is a graph which can fully be described by a sequence of vertices.
Theorems
The only paths which are non-bipartite are cycles of odd order.
Parents
Subset of
Context