Right-continuous function
Set
context | $p\in\mathbb N$ |
definiendum | $f\in\mathrm{RightContinuous}(\mathbb R^p,\mathbb R) $ |
postulate | $f:\mathbb R^p\to\mathbb R$ |
range | $\varepsilon,\delta\in \mathbb R_+^*$ |
$y\in\mathbb R^p$ |
postulate | $\forall y.\ \forall\varepsilon.\ \exists \delta.\ \forall x.\ (x\ge y\ \land\ \Vert x-y \Vert < \delta) \implies |f(x)-f(y)|<\varepsilon$ |
Discussion
Reference
Wikipedia: Continuous function