Right-continuous function

Set

context $p\in\mathbb N$
definiendum $f\in\mathrm{RightContinuous}(\mathbb R^p,\mathbb R) $
postulate $f:\mathbb R^p\to\mathbb R$
range $\varepsilon,\delta\in \mathbb R_+^*$
$y\in\mathbb R^p$
postulate $\forall y.\ \forall\varepsilon.\ \exists \delta.\ \forall x.\ (x\ge y\ \land\ \Vert x-y \Vert < \delta) \implies |f(x)-f(y)|<\varepsilon$

Discussion

Reference

Wikipedia: Continuous function

Parents

Subset of

Link to graph
Log In
Improvements of the human condition