Sine function
Function
definiendum | sin:C→C |
definiendum | sin(z):=∑∞k=0(−1)k(2k+1)!z2n+1 |
θ∈R
sin(θ)=12i(eiθ−e−iθ) |
---|
i.e. if ζ:=eiθ, then ζθ−¯ζθ=2isin(θ).
Theorem
- From
∑bn=ae2kn=∑bn=a(e2k)n=…
we get
∑bn=asin(2kn)=sin(k(a−b−1))sin(k(a+b))sin(k)
- The following is kinda odd:
Integrate[Sin[a*x]*Sin[b*x]/x^2,{x,0,Infinity}]
Integrate[Sin[k*x]*Sin[(k+q)*x]/x^2,{x,0,Infinity}]