## Abelian group

### Set

context | $\langle X,* \rangle \in \mathrm{Group}(X)$ |

definiendum | $\langle X,* \rangle \in \text{it}$ |

for all | $a,b\in X$ |

postulate | $a*b=b*a$ |

### Discussion

One generally calls $X$ the group, i.e. the set where the operation “$+$” is defined on.

An abelian group is also a module over the ring of integers.

### Reference

Wikipedia: group