Abelian group
Set
context | $\langle X,* \rangle \in \mathrm{Group}(X)$ |
definiendum | $\langle X,* \rangle \in \text{it}$ |
for all | $a,b\in X$ |
postulate | $a*b=b*a$ |
Discussion
One generally calls $X$ the group, i.e. the set where the operation “$+$” is defined on.
An abelian group is also a module over the ring of integers.
Reference
Wikipedia: group